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Figure 1: Average images, such as ‘Kids with Santa’ c© Jason Salavon (a) are a creative way to visualize image data. However, attempts to
replicate this technique with data automatically scraped from the Internet (b) does not lead to good results (c,d). In this work, we propose an
interactive framework for discovering visually informative modes in the data and providing visual correspondences within each mode (e).

Abstract
This paper proposes an interactive framework that allows a user
to rapidly explore and visualize a large image collection using the
medium of average images. Average images have been gaining
popularity as means of artistic expression and data visualization, but
the creation of compelling examples is a surprisingly laborious and
manual process. Our interactive, real-time system provides a way to
summarize large amounts of visual data by weighted average(s) of
an image collection, with the weights reflecting user-indicated im-
portance. The aim is to capture not just the mean of the distribution,
but a set of modes discovered via interactive exploration. We pose

this exploration in terms of a user interactively “editing” the average
image using various types of strokes, brushes and warps, similar to
a normal image editor, with each user interaction providing a new
constraint to update the average. New weighted averages can be
spawned and edited either individually or jointly. Together, these
tools allow the user to simultaneously perform two fundamental
operations on visual data: user-guided clustering and user-guided
alignment, within the same framework. We show that our system is
useful for various computer vision and graphics applications.
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1 Introduction

The world is drowning in a data deluge [The Economist, Feb 25th
2010], and much of that data is visual. An estimated 3.5 trillion
photographs have been taken since the invention of photography, of
which 10% within the past 12 months. Facebook alone reports 6
billion photo uploads per month; YouTube sees 72 hours of video
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uploaded every minute. Additionally, there is the data that hasn’t
made it onto the Internet (yet), such as the 24/7 video feeds from
millions of surveillance cameras in convenience stores and ATMs.
In fact, there is so much visual data out there already that much of
it might never be seen by a human being! But unlike other types of
“Big Data”, such as text or consumer records, much of the visual
content cannot be easily indexed, searched or hyperlinked, making
it Internet’s “digital dark matter” [Perona 2010].

How can we explore this vast visual space, to see what’s out there?
One way is to anchor off the image meta-data (keywords, surround-
ing text, GPS, etc) as a proxy for indexing visual content. For exam-
ple, typing “wedding kiss” into GOOGLE IMAGE SEARCH will re-
turn pages upon pages of photos that have somehow been associated
with the words “wedding” and “kiss”, most of them actually depict-
ing formal kissing of various sorts (Figure 6a). While this seman-
tic focusing vastly narrows down the data (from {all photos}
down to {all wedding kiss photos}), the resulting set is
still far too vast to take in by mere visual inspection. How can we
capture the visual gestalt of this data, its Platonic ideal?

The main inspiration and a departure point for this paper is the re-
cent surge in the use of data analytics and visualization techniques
in contemporary art [Viégas and Wattenberg 2007]. In particu-
lar, the simple technique of image averaging has been used ex-
tensively, and to great effect, by several well-known contempo-
rary visual artists, such as Krzysztof Pruszkowski [1986], Jason
Salavon [2004], James Campbell [2002], and Idris Khan [2005]. An
average image of a set of photographs is obtained by simply com-
puting the average color at each (x, y) pixel position independently
across the set. This has the effect of capturing the overall similar-
ities within the set while blurring out the individual differences1.
For example, Figure 1a shows a piece by Salavon titled ‘Kids with
Santa’, from his 100 Special Moments series [2004], which is an
average computed over a hundred photos the artist manually picked
from the Internet. Notice how, although the average is quite blurred,
one can definitely decipher a figure dressed as Santa Claus, with an-
other figure sitting on his knee – the individuality and uniqueness
of each “special moment” usurped to tell a universal story.

Alas, we discovered that trying to replicate Salavon’s averages au-
tomatically turns out to be quite difficult, e.g. simply downloading
the top hundred images using a Google query “kids with Santa”
(Figure 1b) and averaging them does not work well (Figure 1c).
This is because the data is too varied (e.g. there are close-ups vs.
long-range views, Santa could be in vastly different poses, or be
missing altogether), and even images that depict the same type of
scene (e.g. sitting Santa with kid on left knee) are not spatially
aligned resulting in an extremely blurry average. Trying to reduce
the data variability by first clustering the images using popular tech-
niques, gives a slight improvement (Figure 1d), but nowhere close
to Salavon’s hand-picked average.

Of course, it is an artist’s role to “actively guide analytical reason-
ing and encourage a contextualized reading of their subject mat-
ter” [Viégas and Wattenberg 2007], but the only active guidance
available in image averaging is the choice of which images to in-
clude – a blunt and inefficient instrument. What if we wanted to
bring into focus different parts of the average image, such as Santa’s
face, or that of the kid? Antonio Torralba (a computer scientist
who is also an accomplished artist) has been working on centered

1In fact, this technique is almost as old photography itself, going back
to Sir Francis Galton who, “having obtained photographs of several persons
alike in most respects, but differing in minor detail”, created “composite
portraits” by “throwing faint images of the several portraits, in succession,
upon the same sensitised photographic plate” as way of “extracting typical
characteristics from them” [Galton 1878].

average images [Torralba 2001] where a dataset is first centered
(aligned) on a particular object (e.g. a face, a spoon, etc) before the
average is computed. Torralba’s beautiful averages [Torralba 2001]
contrast a sharper focal point with an eerie, dream-like background.
Unfortunately, to achieve this effect requires that the object in focus
be carefully hand-labeled in all images in the dataset before com-
puting the average, making this approach completely impractical
for large-scale data.

In this paper, we propose an interactive framework that allows a
user to rapidly explore and visualize a large image collection us-
ing average images. The idea is to summarize the visual data by
weighted averages of an image collection, with the weights reflect-
ing user-indicated image and feature importance. The aim is to
capture not just the mean of the distribution, but a set of modes and
projections (Figure 1e top), discovered via interactive exploration.
The user interactively “edits” the average image using various types
of brushes and warps, similar to a normal image editor, with each
user interaction providing a new constraint to update the average.
The user can also spawn and edit new weighted averages either in-
dividually or jointly, in which case an image that is weighted highly
in one average will automatically be down-weighted in the others.

Alternatively, one can view the proposed framework as a new way
to perform two fundamental operations on visual data: user-guided
clustering and user-guided alignment. Automatic (i.e. unsuper-
vised) image clustering and image alignment are, of course, two
key problems in computer vision, both largely unsolved. By bring-
ing the user into the loop, we demonstrate how to address these
two problems jointly, within the same framework. And while our
main driving application is in Big Visual Data exploration and im-
proved artistic expression, we also demonstrate our framework to
be of value in various other computer vision and graphics tasks.

2 Prior Work
Our work builds on ideas from a number of different areas:

Image stacks: Given a stack of (typically) registered images of
the same subject matter, methods such as Photomontage [Agarwala
et al. 2004] offer various multi-image pixel operations on the stack,
resulting in a combined “best” image. Our approach shares the idea
of operating on an image stack, except our stack is 1) made up of se-
mantically, but not necessarily visually similar data, 2) not typically
well aligned, and 3) far too large for any manual per-image user
guidance. Also related, a computer vision technique called con-
gealing [Learned-Miller 2006; Huang et al. 2007a] jointly aligns a
stack of images of the same object category by iteratively bringing
each image into closer alignment with the average. A recent exten-
sion [Mattar et al. 2012] can even jointly align and cluster simple
digit images. The congealing pipeline is fully automatic and while
it works quite well for simple, unimodal categories (e.g. digits) and
small mis-alignments, due to its iterative nature, it often falls into
local minima on more complex image data.

Image clustering and data mining: A standard way to model and
visualize multi-modal data is by clustering. However, clustering
is a highly under-constrained problem [Balcan and Blum 2008],
so most clustering algorithms, such as k-means, spectral cluster-
ing [Shi and Malik 2000], make strong distributional assumptions
about the data and/or the distance metric, which often produce re-
sults that do not correspond to what is anticipated by the user.
The present work can be thought of as a type of interactive clus-
tering [Balcan and Blum 2008] where the user can refine cluster-
ing results via interactive feedback. Other efforts aim to mine vi-
sual collections by finding a small number of important or “iconic”
images [Simon et al. 2007; Berg and Berg 2009] or visual ele-
ments [Doersch et al. 2012]. We differ in that our aim is to cap-



ture the gestalt of the data, not sample from it (although our system
provides the latter as well). Unsupervised sub-category discovery
approaches [Divvala et al. 2012; Hoai and Zisserman 2013] use
discriminative clustering to find multiple modes for a given visual
category. However, these methods do not provide local image align-
ment, resulting in poor clusters (see Sec. 4).

Data-assisted content editing and content creation: There has
been recent interest in using large amounts of online visual data as
content for computer graphics. For example, Hays and Efros [2007]
use millions of Flickr images as data for filling holes in a given
scene, whereas Sketch2Photo [Chen et al. 2009] allows a user to
generate new visual content by employing sketch and text queries
to find and compose together content from existing photographs.
There are also methods that use large amounts of data to provide
artistic guidance to the user as part of the content creation process.
Most related to our work is ShadowDraw [Lee et al. 2011], which
helps users draw better by providing real-time average “shadow”
suggestions of what to draw next by matching what has already
been drawn against a large database of existing imagery. Our
sketching brush tool is very much inspired by ShadowDraw, but
whereas ShadowDraw is fundamentally a reactive, bottom-up pro-
cess – first asking the user to draw something and only then pro-
viding suggestions, our system aims to be top-down – first giving
the user a sense of what is in the data, and only then asking him
to refine it. More importantly, the target goals are fundamentally
different: while ShadowDraw aims to help the user in drawing, our
AverageExplorer aims to help the user in exploring and aligning
large image collections, while also facilitating a number of other
applications (Sec. 4). Inspired by successful content-based image
retrieval systems like Fast Multiresolution Image Querying [Jacobs
et al. 1995] and BlobWorld [Carson et al. 2002], our system also
takes paint strokes and user-specified regions as input (Sec. 3.3).

Exploratory data visualization: There is a large body of work on
exploring and mining Big Data in a visual way (see [de Oliveira
and Levkowitz 2003] for a survey), but the vast majority is on visu-
alizing non-visual data, which is rather different from the problem
we are trying to address. Several works show beautiful ways of vi-
sualizing a specific type of visual data, such as photos of the same
location [Snavely et al. 2006], or of the same person [Kemelmacher-
Shlizerman et al. 2011]. Of the few attempts to visualize generic,
large-scale visual data, the most related is the “Visual Dictionary of
Tiny Images” [Torralba et al. 2008], that aims to provide a visual
summary of 80 million images using an atlas of 53464 tiny aver-
age image tiles, each corresponding to one English noun. While
the online demo is fun to explore, semantic concepts (words) often
do not correspond to coherent visual concepts, making many of the
average images noisy and uninformative. In this work, we only use
semantics (e.g. keyword tags) as an initialization, and then let the
user interactively discover visual concepts hidden in the data.

3 Approach
AverageExplorer is a real-time interactive system that allows the
user to easily explore and navigate a large image collection through
the manipulation of average image(s). The input is a (potentially
very large) collection of images, typically representing the same se-
mantic concept (“cats”, “shoes”, “Paris”, etc.) but with wide vari-
ation in appearance, e.g. Internet images retrieved using a search
engine. The output is a set of average images that depict different
modes in the data, as well as feature correspondences between im-
ages within each mode. The user is provided with a set of brush
tools to iteratively “edit” each average image. The objective is to
summarize the image collection with weighted average(s) of im-
ages, in which the weights reflect the user’s suggested importance.

AverageExplorer has five main components: (1) the user interface,

which displays one or more average images that reveal different
modes in the data; (2) a method to generate/update an average
image, which continuously takes the user’s edits and re-ranks the
database images accordingly; (3) a set of brush tools (explorer, col-
oring, and sketching), which the user applies to the average image
to denote what she deems important; (4) cluster spawning, which
dynamically creates a new cluster at anytime for simultaneous ex-
ploration of multiple average images; and (5) image alignment,
which automatically warps each image in the dataset to better align
it with the user-specified constraints.

3.1 User interface

The AverageExplorer interface is composed of the current average
image, a button for each brush tool, a button to generate a new
cluster, and a retrieval display of the top most similar (i.e. highest-
weighted) images to the current average. The average image and
retrieved images are updated in real-time as the user continuously
provides edits. When the user makes an edit, it is highlighted on
both the average image and in each of the retrieved images. If more
than one average image is being edited, the user can switch focus
between them by pressing the ‘tab’ key or clicking on the corre-
sponding cluster with the mouse cursor (see video).

3.2 Generating the average image

Given a database of N images {I1, . . . , IN}, we continuously up-
date its average image in real-time as the user interacts with the sys-
tem. We create the average image Iavg by computing a weighted
average of the database images that reflects the score (i.e. weight)
si of each image (for now, we assume that the images are spatially
aligned; in Sec. 3.5, we will relax this assumption):

Iavg =

∑N
i=1 si · Ii∑N
i=1 si

. (1)

We initialize si = 1/N,∀i so, we start with Iavg being a simple
pixel-wise mean of the entire image collection. Once editing be-
gins, the score si for each image Ii is updated to reflect how well
that image matches the user’s edits, and is computed cumulatively:

si =
∑T
t=1match(wt

user, Ii), (2)

where si is the cumulative score of image i after T edits, wt
user rep-

resents the user edit at time t, and match(·) returns how similar a
given image Ii is to the user edit wt

user. For now, we will define
match(wt

user, Ii) = wt
user · φ(Ii), i.e. the dot-product between the

user edit wt
user and image Ii in some feature space defined by φ(·).

(the exact representation of wt
user and φ(·) depends on the type of

user edit and will be defined in Sec. 3.3). Intuitively, each user edit
tells the system which visual patterns should be present (or empha-
sized) within the spatial region where the edit has occurred. An
image that has similar visual patterns as the user’s edit will produce
a high match(·) value, while an image that has dissimilar visual pat-
terns will produce a low match(·) value. Because the image scores
are computed cumulatively, we only need to update the score to re-
flect the latest edit, which allows our system to update the average
image very quickly and smoothly from one edit to the next.

To reduce the effect of noisy matches produced when editing has
just started (e.g. with a single edit, there can be a few matches that
agree extremely well at the local region level, but not at the global
image level), we apply the following nonlinear function (also used
by [Lee et al. 2011] for a similar purpose) to each image score:
s∗i = max(0, si − α · s̄)γ , where s∗i is the updated image score,
s̄ is the average of the top K image scores, α = 0.2 + 0.05 ·



Figure 2: We propose a set of brush tools that can be used to edit the average image to interactively explore the data. Each user interaction
provides a new constraint to update the average.

T , γ = 0.1 · T , and K = 20. As α increases, fewer images
will have score greater than 0, and as γ increases, the distribution
of those positive scores will become more peaked. The combined
effect makes the average image blurry initially and sharper over
time (i.e. as T increases).

3.3 Brush tools

AverageExplorer provides three brush tools to navigate the data:
coloring, sketching, and explorer. Each tool allows the user to dy-
namically update the average image. After each edit, the weight of
each database image is changed according to how similar it is to all
of the user’s edits provided thus far.

3.3.1 Coloring Brush

The coloring brush allows the user to paint on the average image
by adding color strokes. The user chooses a color (mouse right but-
ton) from either a standard color palette or a “data-driven palette”
which contains the most common colors for the region currently
under the blush across the dataset. The user can adjust the size of
the brush by scrolling the mouse wheel, and color by holding down
the left mouse button. This tool is most useful when the user wants
to constrain the color of a specific spatial region (e.g. to specify
the color of a person’s hair or eyes). We encode the user’s color
stroke at the current iteration T as wT

user = Hc, which is a normal-
ized, 5-dimensional (x,y,R,G,B) histogram containing a uniformly-
sampled 4x4x4 RGB histogram within each 8x8 pixel block of the
stroke (see Figure 2d). Each database image Ii is encoded in the
same way, φ(Ii) = Hc,Ii ; a normalized 5-dimensional (x,y,R,G,B)
histogram computed in the same spatial region as the user’s color
stroke. match(wt

user, Ii) = Hc · Hc,Ii , a dot-product between the
two histograms, encoding the degree of their similarity.

As the user paints, the average image is updated dynamically at
30 fps. Figure 2(a) shows an example usage: a user selects the
brown color, clicks on the center of the average image and starts
painting, giving high weight to the brown images in the dataset,
which changes the average image accordingly.

3.3.2 Sketching Brush

The sketching brush allows the user to add line strokes to the aver-
age image. The user can choose the size of the brush by scrolling
the mouse wheel, and sketch by holding down the left mouse but-

ton. It is most useful for adding fine details (e.g. outlining the
shape of the chin or drawing glasses when exploring faces). We
encode the user’s sketch at the current iteration T as wT

user = Hg ,
which is a histogram with spatial and orientation bins encoding the
gradients under the stroke region. We use the standard Histogram
of Gradients (HOG) representation [Dalal and Triggs 2005] with
8x8 pixel spatial bins (see Figure 2d). Each database image Ii is
encoded in the same way, φ(Ii) = Hg,Ii ; a HOG feature com-
puted in the same spatial region as the user’s line stroke. Thus,
match(wt

user, Ii) = Hg ·Hg,Ii , a dot-product between the two his-
tograms, encoding the degree of their similarity.

As with color brush, as the user sketches, we dynamically update
the average image at 30 fps. Figure 2(b) shows an example usage:
the user sketches a diagonal stroke to denote a particular chair leg
shape, which gives high weight to the database chair images that
have similar shaped legs and updates the average image and the top
retrieved images accordingly.

3.3.3 Explorer Brush

The coloring and sketching brushes are useful to emphasize and
sharpen the features that are already visible in the average image.
However, if the user wants to explore information that may be hid-
den in the data and not immediately visible through the average, she
is essentially limited to guessing the correct stroke. The explorer
brush attempts to overcome this limitation; it is thus our most im-
portant tool. The main idea is to collect local patches situated in the
same spatial position across all database images, and cluster them
into a set of visually-informative modes. As part of the explorer
tool, the user can pick a single mode, and see the global average
computed using only the images that are assigned to (conditioned
on) that mode, as illustrated on Figure 3. This give the user a local
tool to interactively explore the different components that make up
an average image.

Specifically, given a mouse cursor position, we find the dominant
local modes (groups) in the image stack data for that rough spa-
tial location. To find the modes, we adapt the mid-level discrim-
inative patch discovery approach of [Singh et al. 2012]. It mines
mid-level visual patterns that are frequently-occurring but also dis-
criminative (sufficiently different from the rest of the “natural vi-
sual world”). We first sample a thousand “seed” patches centered at
the mouse cursor position from a random subset of the database
images. For each seed, we compute distances to patches from



Figure 3: Our explorer brush groups local image patches (shown in
green bounding boxes) from the same rough spatial position across
all database images. Then, for each group, our system averages the
full images assigned to the group to create an average image.

(roughly) the same spatial position in all remaining database im-
ages, and also compute distances to random patches in random im-
ages (downloaded from Flickr), which represent the “natural vi-
sual world”. For each potential group (seed patch and its k nearest
neighbors) we compute the inlier score u, which is the ratio of the
database images (inliers) to the Flickr images (outliers) in the k
nearest neighbor patches (k = 50 in our experiments). The inlier
score measures the uniqueness of the nearest neighbors. A group
that includes many Flickr patches will not be unique as it will cap-
ture common visual patterns found in the natural world, whereas a
group comprised mostly of patches from the database will capture
unique visual patterns, and thus be good for matching and align-
ment (see Figure 3; the top-ranked modes are discriminative and
lead to accurate matches).

We then rank each group of seed patch pj and nearest neighbors
{d1, . . . , dN} by: (

∑N
m=1 sm ·z(dm)) ·uj , whereN is the number

of detections (one per image), sm is the score of the image contain-
ing patch dm, z(dm) is the similarity score between pj and dm, and
uj is the inlier score. This scoring function will assign high rank
to unique groups whose nearest neighbors match well to the seed
patch and come from highly weighted images (due to previous ed-
its). This reinforces the gradual change of the average image, since
the top suggestions (i.e. highest ranked groups) are likely to come
from images that contributed highly to the previous average image
(see next paragraph for details on how to choose between different
groups). We retain groups that have inlier score u greater than 0.75,
and remove near-duplicate groups that have spatial overlap of more
than 25% between any 30 patches of their members. This typically
results in 10-50 groups that represent the main local modes of the
data at that spatial position.

The user interaction proceeds as follows: As the mouse hovers over
a particular part of the average image, the top-ranked local modes
are displayed below the average image, as average local patches
(Figure 2c). The user can interactively change the size of the lo-
cal patches by scrolling the mouse wheel. By default, the main
panel displays the average image according to the top-ranked local
mode. But the user can explore the average images of the lower-
ranked modes by pressing the ‘tab’ key, which shifts down to the
next mode (Figure 2c). Once the user finds an interesting position
on the average image and picks the preferred local mode, she can
use this mode as an extra constraint on the average image by press-
ing the left mouse button. Specifically, we encode the user’s mode
constraint at the current iteration T as wT

user = He, which is a his-
togram of the gradients in the seed patch of the given mode, again
using HOG. Each database image Ii is encoded in the same way,
φ(Ii) = He,Ii ; a HOG feature computed in the same spatial re-
gion as the selected mode. Thus, match(wt

user, Ii) = He · He,Ii ,
a dot-product between the user edit’s and database image’s HOGs.
This has the effect of constraining the average image to give more

Initial avg. 1st edit 2nd edit 3rd edit Final avg. w/o alignment

Figure 4: We align each database image to produce a sharper av-
erage image. Notice how just clustering (without alignment) is in-
sufficient to produce a sharp average (right-most column).

weight to the images from that local mode.

Real-time speed-up: Unlike the previous tools, the computation
required for the explorer tool is too expensive to run in real time
due to large amount of patch nearest neighbor searching across the
entire dataset, the discriminative patch mining, and the fact that
the user wants to explore the space rapidly. To achieve real-time
performance, we are forced to pre-compute the matches offline.
Specifically, we first sample seed patches on a dense regular grid
(4-pixel stride) at multiple scales (32x32, 48x48, 80x80, 128x128
pixel patches) for the entire image collection. We then compute
distances (dot-product in HOG space) to all patches within a 2x
length (64 to 256 pixels) region surrounding the seed patch in all
remaining database images. For each seed, we store the top match-
ing patch per image with match score greater than 0.5, and record
both the match score as well as the position and scale of the matched
patch. During online processing, for each seed in the current mouse
cursor position, our system selects the top-matching patch in each
database image to create the average image.

Figure 2d shows example usage: given a database of face images
initially with uniform weight (top), the user explores different types
of mouths (bottom). The user has chosen the second mode, which
changes the average image accordingly.

3.4 Interactive Clustering

At any time during data exploration, the user can spawn a new clus-
ter. This is particularly useful when the user wants to explore mul-
tiple modes in the data at the same time. For example, when explor-
ing human faces, the user might want to separate, say, people with
oval faces from people with rounder faces. To this end, we present
a tool for interactive clustering, in which a user’s edit on one aver-
age image influences the average images of the other clusters (i.e.
modes). The goal is to simultaneously produce sharper average im-
ages for all clusters, which means that each cluster should consist
of images that are similar to each other and dissimilar to images in
other clusters. E.g. if the user edits an average image of a face to be
rounder, then the other average images should become oval-shaped.

To simultaneously update all clusters with each edit, we compute a
cluster-specific weight for each image. The average image for each
cluster is created as in Sec. 3.2, but the weight of each image can
now be different for each cluster. We normalize the cluster-specific
weights in such a way that an image cannot contribute highly to all
clusters. Specifically, we initialize a new cluster c by assigning each
image with uniform weight si,c = 1/N,∀i. We then normalize the
weights such that the total cluster-specific weights of an image sum
to one: i.e.

∑
j si,j = 1, where j indexes the clusters. In effect,

the normalization limits high contribution of an image to one or a



Figure 5: Examples of interactively discovered modes in the data using AverageExplorer.

few clusters, which in turn makes each cluster tighter. To give a
simple example, if there are two clusters, and the user colors one
average image white, then the second average image will become
black, since all the highest weighted images for the first cluster will
be white, while the highest weighted images for the second cluster
will be the opposite (i.e. black).

3.5 Image Alignment

Thus far, we have assumed that the semantic concepts (“cats”,
“shoes”, “Paris”, etc) depicted in each database image will be spa-
tially aligned. In practice, this will rarely be the case (even within
the same mode), especially when working with Internet images re-
trieved using a search engine. If the database images are not spa-
tially well aligned, the resulting average will be blurry, which, in
turn, will lead to meaningless user edits. AverageExplorer provides
a two-step solution to mitigate this problem: robustness to mis-
alignment and image warping.

First, we update the matching function so that it is robust to
(some) spatial misalignment between the database images using
max-pooling [Boureau et al. 2010]:

match(wt
user, Ii) = max

p∈P
wt

user · φp(Ii), (3)

where p indexes over the possible x, y locations in P , and φp(Ii)
is the feature space representation of image Ii computed over the
spatial location defined by p. We setP to be the locations that cover
up to 64 pixels in both x, y directions surrounding the user’s edit.

We then apply non-linear warping to align the database images. For
this, we use Moving Least Squares (MLS) [Schaefer et al. 2006],
which provides a simple closed-form solution that yields fast defor-
mations for real-time performance. MLS estimates a deformation
function that maps a set of source control points to a set of target
control points. We use the center of mass of each user edit in the av-
erage image as a target control point and the center of mass of the
corresponding matching region in the database image as a source
control point. We then warp the database image such that its control
points (from all T edits thus far) align to the corresponding control
points in the average image. The deformation function is applied
to every pixel in the database image (see [Schaefer et al. 2006] for
more details). Note that the warping does not affect the matching
function defined in Eqn. 3; it is used only to align the images more
accurately to form a sharper average.

We compute the average image with the warped images IMLS
i :

Iavg =

∑N
i=1 si · I

MLS
i∑N

i=1 si
. (4)

Our iterative, user-guided process leads to image stacks that have
increasingly better image alignment, producing not only sharper
average images (Figure 4), but also surprisingly high-quality local
feature correspondences (Figure 1e bottom), which can be useful
for rapid data annotation (Sec. 4, “Image annotation”).

Finally, after each user edit, we update each database image with
its warped version. For non-linear warping, we need to recompute
the database image features (HOG, color histograms, and discrim-
inative patches), which is prohibitively expensive. Therefore, we
only translate each image according to the mean offset between the
source and target control points.

4 Results and Applications

We demonstrate how our system can be used to explore and visual-
ize large image collections, and show several potential applications.

Datasets: We experimented with a variety of visual image col-
lections from multiple sources. They are: Labeled Faces in the
Wild (LFW) [Huang et al. 2007b], which has 13233 images with
5749 different people; Cat database [Zhang et al. 2008] (10000 im-
ages); Query-based collections downloaded from Google Images
and Flickr using the following keywords: ‘Church’ (11007 images),
‘Paris’ (7823 images), ‘Butterfly’ (15640 images), ‘Beach’ (8375
images), ‘Wedding kiss’ (16868 images), and ‘Kids with Santa’
(1640 images); YouTube videos: 50 clips of 1 minute summary
of the Cobert Report, sampled at 2 fps (5232 frames total); and 362
PASCAL 2007 Horse images.

Implementation details: We resize each image to the average size
of its dataset. To compute wuser for coloring and sketching we
first create a tight bounding box surrounding the user’s stroke or
selected region. We then compute the color or HOG histograms
over 8x8 spatial bins, and zero-out any cells that do not spatially
overlap with the users’ stroke/region. We whiten the HOG de-
scriptors, as described in [Hariharan et al. 2012], which makes dot
product similarity computations more visually meaningful. When
computing the average image, we ignore any pixels in the warped
images that fall outside of the dimensions of the average image. We
run our system in real-time on a PC with Intel i7-4770K processor
(3.50GHz, 4 cores) and 16GB RAM. For a 10000 image dataset,
the pre-computation processing of features and discriminative patch
discovery can be done on a 150-core cluster in about 10 hours. Our
system is publicly available on our project page.

Interactive exploration and alignment: We first show how Aver-
ageExplorer can help to uncover meaningful patterns in visual data.
We compare against the standard global average of the dataset, as



Figure 6: Interactive exploration and alignment. For each dataset we show (a) example images, (b) global average image, (c) our discovered
modes with 4 top retrieved images and automatically marked correspondences (an experienced user spent on average 134 seconds discovering
each mode using on average 3.4 user edits), and (d) comparison to [Hoai and Zisserman 2013] cluster averages and representative instances
that have the highest confidence scores (i.e., most discriminative). Comparisons to other techniques are in the supp. material. Notice how
our averages are sharper and more semantically meaningful, while our retrieved images offer much better correspondence. To visualize the
correspondences, we display color strokes for coloring tool (e.g. yellow strokes on the forehead), black strokes for sketching tool (e.g. sketch
of glasses), and green bounding boxes for explorer tool.



(b) Our discovered modes (a) [Divvala et al. 2012] modes 
Figure 7: We compare the averages generated by the visual subcategory learning approach of [Divvala et al. 2012] (a) to our averages (b)
using the PASCAL 2007 horse dataset. See text for more details.

M=3 M=6 M=12 M=24 mean
Random Accuracy (%) 55.3 64.9 67.1 64.4 62.9
Manual Accuracy (%) 66.0 65.2 72.6 68.6 68.1

Ours Accuracy (%) 67.4 68.3 71.0 67.8 68.6
Manual Time (minutes) 24 28 39 54 36.25

Ours Time (minutes) 6 9 15 28 14.5

Table 1: User study. Human selection accuracy and timing results
with M representative images. See text for details.

well as several baselines: 1) k-means clustering, 2) spectral cluster-
ing [Shi and Malik 2000], and 3) discriminative sub-category dis-
covery algorithm of [Hoai and Zisserman 2013], which uses neg-
ative images (irrelevant to the category at hand) to learn a better
distance metric for clustering. For all baselines, we represent each
image using the standard HOG descriptor (8x8 pixel cells) concate-
nated with a tiny color image (original RGB image resized by 1/8
in width and height) to spatially encode gradient and color informa-
tion. For [Hoai and Zisserman 2013], we generate a weighted aver-
age image for each cluster, where each cluster instance is weighted
according to the score that indicates how representative it is to
that cluster (see [Hoai and Zisserman 2013] for more details). For
k-means and spectral clustering, we create weighted averages by
weighting each image by its total intra-cluster affinity.

Figure 6 shows results of our system on 3 sample datasets: ‘Wed-
ding Kiss’, Faces, and ‘Church’. In each case, we show a global
average image, six of our discovered modes with four top retrieved
images each (showing correspondences) and results of [Hoai and
Zisserman 2013] (see project web page for more detailed com-
parisons, including those to k-means and spectral clustering). As
discussed earlier, the global average image can only summarize
the data coarsely, displaying only the rough global shape, since it
weighs all pixels equally. Standard clustering techniques, e.g. k-
means and spectral clustering, try to represent different modes in
the data, but often focus on the non-important parts of the image
(e.g. see k-means cluster faces based on their background color in
Figure 3 of the supp. material). [Hoai and Zisserman 2013] does
better, as it learns a better distance metric to discover sub-clusters
within each category. For example, for faces, the representative
cluster instances are mostly consistent visually. However, it is not
able to cope with misalignment, which limits matching accuracy
and resulting in blurry averages. Our averages, on the other hand,
are sharp and clearly depict key modes in the data. For example,
we can discover and align faces of people wearing hats, beards,
and glasses. This is possible due to our system finding accurate
correspondences between visually-similar features and providing
real-time feedback to the user for interactive refinement of the av-
erage image. Notice how our approach allows us to discover visual

Two kids sitting on Santa's both laps A kid wearing Santa's suit Two Santas

A brown tabby cat A solid black cat A cat looking up at the sky

A person riding a horse A horse facing to the right A horse sitting on the ground

Figure 8: Average images created by users given a text query. The
last two columns show failure cases. The users produced blurry and
distorted averages for ‘difficult’ queries that have insufficient data.

modes in the data that might have otherwise gone unnoticed, such
as a gay wedding kiss (the rightmost mode in the top figure). We
also conducted a simple study to determine which of the average
representations were preferred by the users. The results (described
in supplementary material, show overwhelming preference for Av-
erageExplorer results against all other baselines. Figure 5 shows
more examples of the modes discovered by our system.

We also compare our method to the visual subcategory learning ap-
proach of [Divvala et al. 2012], which is similar to [Hoai and Zis-
serman 2013] but also performs global alignment (translation and
scaling) for more accurate clustering. In this setting, we simultane-
ously edit 15 clusters. Figure 7 shows the average images for the 15
clusters discovered from the PASCAL 2007 Horse category by the
baseline (a) and our approach (b). Note that both ours and the base-
line operate on the human-annotated horse bounding box region
within each image. Even so, the object regions are only coarsely
aligned and contain many different modes. Both methods are able
to discover a diverse set of modes. However, our averages are sig-
nificantly sharper due to more accurate interactive clustering, local
warping and alignment between intra-cluster images.

Visual data representation user study: We conducted a user study
comparing different ways to compactly represent a visual dataset:
1) Ours: M average images generated with our system by an ex-
perienced user; 2) Manual: M manually picked iconic images that
represent the database; and 3) Random: M randomly sampled im-
ages from the database. The bottom two rows in Table 1 show the
time it took to create/select the images with M = {3, 6, 12, 24} for
Ours and Manual (Random is automatic).

For each experiment, we presented the subjects with M images (on



Figure 9: Qualitative keypoint annotation results: We show examples of the annotated average image (a), and corresponding propagated
annotations to cluster instances (b) for Caltech Faces dataset [Angelova et al. 2005] (left) and LFPW dataset [Belhumeur et al. 2011] (right).
The blue points are human-marked annotations and green points are our annotations. The outlier images in (c) were not assigned to any
cluster. They correspond to atypical face images, such as a baby doll or Dracula (sharp teeth and heavy make-up).

detected faces annotated clusters annotated images annotated points
BioID 1506 27 (∼55 imgs/cluster) 98.6% 93.2%
LFPW 798 22 (∼32 imgs/cluster) 88.2% 71.1%

Caltech Faces 6476 58 (∼101 imgs/cluster) 90.8% 71.0%

Table 2: Keypoint annotation statistics. Since AverageExplorer accurately aligns images of the same mode, it can be used to efficiently
propagate keypoint annotations. For example, given 6476 face images from the Caltech Faces dataset, we are able to annotate 90.8% of the
images (and 71.0% of the keypoints) by annotating only 58 average images.

Global
average k-means Spectral

clustering [Hoai and Zisserman 2013] [Huang et al. 2007a] [Hoai and Zisserman 2013]
+ [Huang et al. 2007a] Ours error between

annotators
BioID 4.80 3.90 3.69 3.93 4.42 3.73 1.93 N/A (1 annotator)
LFPW 5.97 5.75 5.70 5.69 5.83 5.28 3.38 2.40 (2-3 annotators)

Caltech Faces 5.05 4.74 4.88 4.86 5.05 4.65 2.65 2.43 (1-7 annotators)

Table 3: Keypoint annotation mean pixel error rates. The error rates always compares the annotations produced by each method to the
ground-truth human annotations. Lower numbers are better. For global average and [Huang et al. 2007a], we annotate a single average
image. For all other methods, we annotate 27, 22, and 58 average images on BioID, LFPW, and Caltech Faces, respectively. The last column
shows the error between the different human annotators.

the same screen) which “collectively represent some concept”. We
also displayed 30 test images and asked the subjects to identify 15
of them which are likely to be examples of the same (unspecified)
concept as the “training” images above. We picked two concepts:
‘Paris’ and ‘Kids with Santa’, withM = {3, 6, 12, 24}. We used 15
randomly sampled non-Paris Flickr images and 15 “Santa Claus”
internet images as distracters for ‘Paris’ and ‘Kids with Santa’, re-
spectively. Table 1 shows the result. Across both concepts, the
users were able to select the correct images around 68% of the time
using both Ours and Manual, and 61% of the time using Random.
This suggests that our system is able to produce a concise repre-
sentation of the database that is as informative as manually selected
iconic images, but using significantly less time.

User experience study: We next design an experiment to evaluate
the user experience of our system. We invited 5 novice users to
create average images that correspond to text descriptions such as
“a kid wearing Santa suit”. Each user spent 5-10 minutes getting
familiar with the user interface, using an image collection unrelated
to the study. We then asked each user to create average images for
the following text descriptions in three datasets: 1) Kids with Santa:
“a kid wearing Santa’s suit”, “two kids sitting on Santa’s both laps”,
and “two Santas” (difficult); 2) Cat: “a brown tabby cat”, “a solid
black cat” and “a cat looking up at the sky” (difficult); 3) Horse: “a
person riding a horse”, “a horse facing to the right”, and “a horse
sitting on the ground” (difficult). We allowed each user to spend
4 minutes per average image. We label a text query as “difficult”
if there is insufficient data to create an average corresponding to
the text description. This is to measure how long (in the allotted
4-minutes) it takes a user to realize that the corresponding mode
does not exist in the database. On average, the users spent 201 sec-
onds on the difficult query (as reference, they spent 108 seconds
on the other queries). 93.3% of time, the users believed that it was
impossible to create the difficult mode. We show examples of the

user-generated averages in Figure 8. For the difficult queries, the
users were unable to create an average image that corresponded to
the text description. The resulting average images were distorted,
blurry, or irrelevant to the text description despite the users spend-
ing more time to create them.

Rapid image dataset annotation: Our system’s ability to accu-
rately align images suggests potential applications in computer vi-
sion, such as rapid annotation of keypoints, for example, to train an
object detector. Object/keypoint detection requires a lot of training
data and the standard approach to keypoint annotation is to mark
every image independently, by hand. This can be extremely tedious
and time-consuming, especially for very large datasets. With Av-
erageExplorer, we show that one can significantly accelerate this
process. We evaluate our system by annotating human face key-
points on three widely-used datasets: BioID [Jesorsky et al. 2001],
Labeled Face Parts in the Wild (LFPW) [Belhumeur et al. 2011]
and Caltech Web Faces [Angelova et al. 2005]. For each dataset,
we first run the Viola-Jones face detector to get a coarse alignment
of the faces, and resize each face to 200x200 pixels. We then cluster
and align the faces using our system, and annotate the keypoints on
the resulting average images, which are then automatically propa-
gated to the corresponding cluster members. This way, only a few
clusters need to be annotated manually, instead of each image.

Table 2 shows keypoint annotation statistics. Using AverageEx-
plorer, we are able to annotate 88-98% of the images and 71-94%
of the keypoints by annotating only 22-58 average images. This is a
huge saving in effort compared to the standard approach for anno-
tation, which would require annotating 798-6476 images. Figure 9
(a) and (b) show examples of annotated averages and propagated
annotations, respectively.

Table 3 shows pixel error rates compared to the ground-truth hu-
man annotations (GT) for ours and several baselines. For each



Figure 10: Browsing online shopping products. Our system could
be used in online shopping websites for efficient browsing.

method, we compute the error by averaging the average pair-wise
difference for all keypoints across all images. Computing a sin-
gle global average given the entire image stack produces high error
rates. Clustering methods (k-means, spectral clustering [Shi and
Malik 2000], and discriminative sub-category discovery [Hoai and
Zisserman 2013]) do slightly better, but without any form of align-
ment these methods cannot be used to make fine keypoint corre-
spondences. Congealing [Huang et al. 2007a], which is an auto-
matic algorithm that jointly aligns a set of images, could also be
used for keypoint annotation, but only if all data represents a single
visual mode. Since our interactive method can do both, clustering
and alignment at the same time, it is best suited for the annotation
task. As can be seen in Table 3, our method aligns the images well,
producing pixel error rates that are only slightly worse than the av-
erage error between the different human annotators. The images
that we missed are those that could not be aligned well, such as
outlier images that do not belong to any mode (see Figure 9c).

5 Discussion and Limitations

Our work is but a small step in an exciting new direction of inter-
active Visual Data Exploration. We hope that the ideas and the pro-
totype system presented in this paper will inspire others to explore
this ripe research topic. Here, we will first sketch some potential
applications of our system and then discuss its current limitations.

Online shopping: Our system could be useful to an online shopper
when browsing products (e.g., on AMAZON). For example, suppose
that the user is shopping for shoes [Berg et al. 2010]: she found
a pair in the style she likes, except they are ‘loafers’, and she is
looking for ‘flats’. The user could “remove” the shoe tongue using
our eraser brush (‘right-click’ when using our sketching tool), to
retrieve similar shoes without the tongue (Figure 10).

Interactive portraits: We believe our system could be a fun alter-
native to still image portraits, e.g., displayed on social networking
sites like FACEBOOK (see Figure 11). Social networking sites have
lots of portraits for each user. Instead of the user selecting a single
portrait, we envision each web visitor exploring and browsing a col-
lection [Gallagher and Chen 2008] of the user’s face images (e.g.,
detected via a face detector). Our system could add an element of
human interaction to the portraits, allowing each visitor to freely
explore, e.g., different hairstyles, expressions, clothing, etc. of the
user’s portrait as s/he likes. See our video for this idea in action.

Visual data analytics: Analytics is the discovery and communica-
tion of meaningful (potentially hidden) patterns in data. Due to
AverageExplorer’s progressive updates, in which the user’s edits
cumulatively change the average image, we can “fix” (i.e. condi-
tion on) one region and observe the resulting different modes in
other regions. This could allows us to do a simple form of condi-

Figure 11: Interactive portraits. AverageExplorer could be used in
social networking sites to explore the owner’s face portraits.

tional visual analytics. For example, given a large collection of THE
COLBERT REPORT footage, we could discover what Stephen Col-
bert’s ties look like by first fixing the region of interest on his face
and then exploring the region beneath his face (Figure 12 left). In a
similar manner, we could also observe what Stephen Colbert’s pos-
ture or expression looks like when he is discussing Romney versus
Obama (Figure 12 right).

Limitations Following are the main limitations of our current sys-
tem. First, our system assumes that the image collection to be ex-
plored is already in some kind of “rough” alignment. This is typi-
cally not a problem for object-centric datasets like those one might
get by using an Internet Search Engine, e.g. searching for “car” will
mostly return images with a large car at the center of the image.
However, for more scene-centric datasets, like Google StreetView,
cars will be a small part of the image and not in the center, which
will make them almost impossible to find using our system.

Second, our system is critically relying on good visual matching.
When a user’s edit is incorrectly matched, the warping algorithm
will produce a distorted or blurry average image. Unfortunately,
there is no way to rectify an incorrect match with ensuing edits.
This greedy matching approach can be problematic when the sys-
tem produces a mismatch of two repeated objects (e.g. two faces)
that are close to each other, and the user still desires to discover
them both. One possible solution to this mismatching issue would
be to develop an efficient global matching method that recomputes
matching at each time step using all existing user edits and their
geometric relationships.

Third, while AverageExplorer has good tools for refining clusters
and making sharper averages, it is not as well-equipped at start-
ing visual exploration “from scratch”. For a dataset with a fairly
complex visual concept, the initial average image is likely to be a
gray nothing, making it hard to know where to start the exploration.
The Explorer tool and the Cluster Spawning tool aim to address
this very problem, but often they are either too fine (former) or too
coarse (latter) to provide a robust solution. Some sort of a multi-
scale exploration strategy might be a fruitful direction.

Lastly, speed and memory are the biggest obstacles to scaling our
system up to millions of images, since our system must run in real-
time. We are looking at the use of large-memory GPUs for speed
up, as well as optimizing the off-line/on-line processing pipeline.
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