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Figure 1: We collect thousands of portraits by capturing video of a subject while they watch movie clips designed to elicit a range of positive
emotions. We use crowdsourcing and machine learning to train models that can predict attractiveness scores of different expressions. These
models can be used to select a subject’s best expressions across a range of emotions, from more serious professional portraits to big smiles.

Abstract

We describe a method for providing feedback on portrait expres-
sions, and for selecting the most attractive expressions from large
video/photo collections. We capture a video of a subject’s face
while they are engaged in a task designed to elicit a range of pos-
itive emotions. We then use crowdsourcing to score the captured
expressions for their attractiveness. We use these scores to train a
model that can automatically predict attractiveness of different ex-
pressions of a given person. We also train a cross-subject model that
evaluates portrait attractiveness of novel subjects and show how it
can be used to automatically mine attractive photos from personal
photo collections. Furthermore, we show how, with a little bit ($5-
worth) of extra crowdsourcing, we can substantially improve the
cross-subject model by ”fine-tuning” it to a new individual using
active learning. Finally, we demonstrate a training app that helps
people learn how to mimic their best expressions.
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1 Introduction

Human faces are one of the most common subjects of photographs.
Unfortunately, many of us feel anxiety when a camera is pointed in
our direction. What should I do to look good? Will my smile look
attractive or awkward? We have all experienced the disappointment
of not looking our best in other people’s photos. While models and
actors are taught how to look good when a camera is pointed at
them, the rest of us suffer from a lack of feedback; we simply don’t
know which of our expressions look good to other people. Self-
perception in a mirror can be misleading; the image is horizontally
flipped, but more importantly, our perception of ourselves is often
very different than that of others [Springer et al. 2012] since our
perception is influenced by our self-image and internal emotions.

There are a number of approaches to editing and improving faces
in photographs as a post-process [Leyvand et al. 2008; Joshi et al.
2010; Yang et al. 2011]; however, we often do not have control of
photographs taken by others and posted publicly, and many people
are not comfortable with the idea of manipulating expressions in
photographs. Instead, our goal is to help people look better in pho-
tographs at the time they are taken. Specifically, our method offers
users feedback on how their range of facial expressions are per-
ceived by others, so that they can be better prepared when a camera
is pointed at them. Our method can also be used to select the most
flattering pictures of people from a photo collection or video.

Our approach begins by capturing a user’s range of facial expres-
sions that are appropriate for portraits. We capture a video of the
user while they are shown a twelve minute compendium of videos
selected to elicit a range of neutral and positive emotions [Gross
and Levenson 1995]. We then use a novel data-driven computer vi-
sion model that automatically predicts the scores of the expressions
along two axes: attractiveness and seriousness. (We include the se-
rious attribute so that users can see their best expressions across a
range of scenarios, from big smiles in social settings to more neutral
expressions for professional portraits.) While this method provides
a reasonable approximation of the scores of a user’s expressions, it
cannot capture all the subtle differences between expressions and
variation among users. We therefore also describe a novel crowd-
sourced, active learning scheme to both customize our model to the
user’s data and select the user’s top expressions across a range of
seriousness levels. This active learning scheme reduces the cost of
data collection by an order of magnitude over random sampling, to
about $5.

We provide a number of interfaces and visualizations to inform
the user of the results of our models. The first visualization sim-
ply shows the user their most attractive expressions across twenty
five levels of seriousness (Figures 1,4). Next, we offer a number
of tools to explore and visualize the data more deeply. For example,
the user can select an expression and suggest a change, e.g., opening
the eyes more widely, and see a similar expression with more open
eyes and the corresponding change in attractiveness score. The user
can also visualize the differences between slices of the data, e.g.,
the difference between the most and least attractive expressions that
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contain open eyes. Finally, we also provide an expression training
application, called “Mirror Mirror”, for practicing expressions in
front of a webcam. The user can see their attractiveness and seri-
ousness scores in real-time, and can practice mimicking their best
expressions by selecting one and using a visualization that cross-
fades between aligned versions of the current and selected expres-
sions.

We test our method on input videos of eleven subjects, and numer-
ically evaluate our methods on hold-out data. We also include a
demonstration of the training app to show that subjects can use it to
mimic selected expressions. Finally, we apply our method to select
the most attractive expressions of a subject from videos downloaded
from the internet, as well as personal photo collections.

2 Related Work

The perception of facial expressions is a well-studied topic [Calder
et al. 2012]. The diversity of facial expressions are organized by
the Facial Action Coding System (FACS) proposed by Ekman and
Friesen [1978]; each action unit describes a specific facial motion
(e.g., “cheek raiser”) and its underlying muscular basis. More re-
cent work [Du et al. 2014] suggests that there are an even larger
range of facial expressions than those encoded by FACS. Of partic-
ular interest to our application is the difference between an insin-
cere, voluntary smile and a spontaneous smile, which adds a slight
narrowing of the eyes. Studies show that a small percentage of peo-
ple are able to fake spontaneous smiles (also known as “Duchenne
smiles”) [Krumhuber and Manstead 2009; Gunnery et al. 2012],
which should yield better portraits. The muscular differences in
other subtle smile variations (e.g., amused, polite, nervous) have
also been observed [Ambadar et al. 2009].

Another area of related research is the differences in social judg-
ments elicited by different faces. Oosterhof and Todorov [2008]
algorithmically generate different face shapes and measure their
perceived traits (attractive, trustworthy, etc.) as scored by humans.
They find that most traits approximately lie in a two-dimensional
space that can be modeled as a linear combination of two principal
components: valence and dominance. We instead model differences
of traits between expressions of a single person, and we choose axes
that are more relevant to our application (attractive and serious).
However, our experiments also show that other traits that may be
desirable in a portrait (e.g., trustworthy, confident) are strongly cor-
related to our chosen axes. Predicting, ranking, and improving the
attractiveness or memorability of the faces of different people is a
common research topic [Leyvand et al. 2008; Kagian et al. 2008;
Gray et al. 2010; Yang et al. 2011; Altwaijry and Belongie 2013;
Khosla et al. 2013]. We instead focus on the attractiveness of dif-
ferent expressions of the same person.

There is significant work in the computer vision literature on the
automatic recognition of facial expressions [Pantic and Rothkrantz
2000]; most of this work focuses on FACS recognition. In con-
trast, Dibeklioglu et al. [2012] predict whether a portrait contains
a genuine Duchenne smile. Both Shah and Kwatra [2012] and Al-
buquerque et al. [2008] identify smiles from multiple portraits for
the purposes of selecting or generating better photographs. None of
these techniques can provide a continuous rating of attractiveness
of the various facial expressions of an individual. Fiss et al. [2011]
select facial expressions from a video stream that best serve as can-
did portraits. However, they optimize for portraits that convey the
moment, and many of the selected expressions are not attractive.
Also, their method requires temporal features such as optical flow,
and cannot be used on photo collections, which we demonstrate in
Section 8. Finally, our approach to using crowdsourcing to collect
ranking and scoring data for subjective attributes of images is in-

Figure 2: Left: our video capture set-up. Subjects watch videos
(played by an iPad on top of a camera) while we record them. Right:
example subject expressions.

spired by Parikh and Grauman [2011], and similar to recent work
on font attributes [O’Donovan et al. 2014] and fashion style [Ki-
apour et al. 2014].

3 Overview

Our system has a number of components that can be organized into
two main steps: training and testing.

Training: We begin by collecting a large set of aligned and white-
balanced images of unique facial expressions for 11 subjects (Sec-
tion 4). The first step is to score each image along two attributes:
attractiveness and seriousness. We use crowdsourcing to collect
randomly-sampled pairwise comparisons for each subject and at-
tribute (Section 4.3), and then perform MAP estimation to compute
attribute scores for each image of each subject (Section 5.1). Since
we are particularly interested in accurate ranking of the most at-
tractive expressions across different levels of seriousness, we col-
lect additional crowdsourced pairwise comparisons for the highest
scoring expressions and re-estimate scores to obtain an even more
accurate ranking (Section 5.1.2). These scores for a single subject
are used to train a single-subject regression model (Section 5.2)
that can estimate attribute scores for an image of the same subject.
The model takes as input features of a single image (computed in
Section 4.2), and can operate on previously unseen images of the
subject. Finally, we take the scores for all 11 subjects and train a
cross-subject regressive model that can operate on images of any
subject (Section 5.3). This model is more general since it can score
a new person’s expressions without any additional crowdsourcing;
however, it is less accurate than the single-subject model.

Testing: Our system offers a number of applications, such as ex-
pression training (Section 6) and visualization (Section 7), for sub-
jects that are not in our training data. For some applications (e.g.,
Figure 17), we can simply use the cross-subject model to compute
attributes. In situations requiring higher accuracy, we first collect
images of the new subject’s expressions, and use the cross-subject
model to compute baseline attribute scores. We use the seriousness
scores as-is, since the cross-subject model is accurate enough for
this attribute. For attractiveness we use an active learning scheme
(Section 5.4) to collect a small number of crowdsourced pairwise
comparisons. During this step we re-estimate attractiveness scores
for each of the subject’s images using both the pairwise compar-
isons and the cross-subject model as a rough prior. Finally, we train
an improved single-subject model from the new scores.

4 Collecting Portrait Data

Our first goal is to collect a set of portrait expressions of a sub-
ject and rate them along attributes that provide useful feedback for
portrait posing. However, we first need to determine the range of ex-
pressions we wish to capture, and select criteria for good portraits.
Clearly, attractiveness is a common goal in most casual portraiture.
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(a) Input video (b) Facial tracking (c) White balance

(d) 3D alignment (f) Selected representative frames(e) Feature

Figure 3: We pre-process the input video to align the faces, compute
features, and reduce data redundancy.

Also, while most work on facial expression analysis [Ekman and
Friesen 1978; Oosterhof and Todorov 2008] include negative at-
tributes like anger and sadness, these attributes are generally not
desired in contemporary portraits. We therefore restrict our focus to
positive attributes. Along with attractiveness there are a number of
positive attributes for portraits; for example, we may wish a profes-
sional portrait to appear confident, or a sales person may wish to
appear trustworthy.

In initial experiments, we collected measurements on portraits for
attractive, confident, and trustworthy attributes. However, like pre-
vious work [Oosterhof and Todorov 2008], we found these at-
tributes to be highly correlated, and therefore redundant. Oosterhof
and Todorov show that most attributes can be represented as linear
combination of two attributes: valence and dominance. Valence is
roughly parallel to attractiveness, while dominance is roughly par-
allel to aggressiveness. We therefore kept the attractive attribute,
and chose to add a second attribute that is parallel to aggressiveness
but also useful for our portrait application. We found that the high-
est rated portraits for attractiveness consistently had large smiles;
however, it is also useful to be able to pose well for more neutral
expressions without large smiles. We therefore added the “serious”
attribute, since it is both a useful control for smile strength, and is
nearly parallel to aggressiveness.

In the rest of this section, we first describe how we capture portraits
that span a range of positive expressions. Next, we pre-process the
portraits to normalize their position and color, extract image fea-
tures used for predicting attribute scores, and eliminate data redun-
dancy. Finally, we use crowdsourcing to collect pairwise compar-
isons of portraits along the attractive and serious attributes.

4.1 Collecting a Personal Portrait Dataset

We start by collecting a large range of positive facial expres-
sions that may be appropriate for portraits for each subject. We
hand-edited together a 12-minute compendium of short videos that
ranged across several categories, including funny, scientific, and in-
spirational topics. The video is shown on an iPad mounted directly
above a SLR camera capturing video, so that it appears the sub-
ject is looking at the camera (Figure 2). We also asked the subject
to make their best portrait expression in several posed categories,
such as confident, big open-mouthed smile, etc. Video is often used
to elicit emotions for facial analysis [Gross and Levenson 1995;
McDuff et al. 2012]. An alternative is to engage in a conversation
with the subject [Fiss et al. 2011]; however, mouth motions can
make stills unsuitable for portraits. In total, we collected the data of
11 subjects including both male and female subjects ranging in age
from 23 to 50.

4.2 Pre-Processing

We perform several pre-processing steps (Figure 3) for each cap-
tured video to align the facial data, compute facial features and re-
duce data redundancy.

Facial tracking and pose normalization: We first perform track-
ing and pose alignment to place the face in a common reference
frame. We use a recently developed face tracker [Xiong and De la
Torre 2013] that accurately estimates nine facial feature points and
localizes different facial parts such as eyes, mouth and nose (Fig-
ure 3b). We apply a median filter with a window size of 5 frames
to smooth the estimated points and suppress tracking temporal jit-
ter. Then we align the tracked face to a 3D template model released
by [Zhang et al. 2004]. In particular, we estimate a 3D-to-2D trans-
formation matrix between the pre-annotated 3D points in the 3D
model and the detected 2D facial points using least squares. Fi-
nally, we warp the 2D face into a frontal view (174 × 224) using
the computed transformation matrix. We exclude frames for which
the tracker reports tracking failures.

Feature extraction: We extract HOG (Histogram of Oriented Gra-
dients) [Dalal and Triggs 2005] features to capture visual properties
of facial expressions in different parts of the face at different scales.
Figure 3e shows five bounding boxes we use for HOG extraction,
which capture two eyes (4× 6 cells), eyebrows and wrinkles (2× 6
cells), the mouth (2× 6 cells) and the whole face (8× 6 cells). The
cell size for HOG is 8 pixels. Combining features of different parts
results in a 3720-dimensional feature vector.

Select representative expressions: Each video typically contains
around 16, 000 frames with highly redundant sampling of com-
mon expressions; collecting ratings for each frame is impracti-
cal. Therefore, we implement a simple greedy algorithm to select
unique expressions from the input video. The algorithm starts by
randomly selecting a frame Ii from the video, and then removes
any other frame Ij which is very similar to the current frame (i.e.,
D(Ii, Ij) > T where D(·, ·) is an appearance similarity function
between two expressions and T is a threshold). After the first itera-
tion, we repeatedly select another random frame and remove dupli-
cates until all frames have been processed. The similarity function
D(Ii, Ij) is a weighted dot product between the HOG vectors of
frames Ii and Ij (after first centering and whitening the HOG vec-
tors [Hariharan et al. 2012]). As in previous work [Kemelmacher-
Shlizerman et al. 2011], we weigh the mouth regions four times
as strongly as the other features. We set the threshold T by binary
search with the goal of extracting 200 to 250 unique expressions,
which we observe empirically to be a good range for avoiding du-
plicates while avoiding the elimination of subtle but significant fa-
cial expression differences. Figure 3f shows several examples of the
remaining frames.

White Balance: Some of our videos are not properly white bal-
anced. To reduce the distortion in color space, we white-balance
the selected representative frames using Adobe Lightroom before
we collect the annotation data.

4.3 Crowdsourcing Pairwise comparisons

We next collect human response data that allows us to score the
unique expressions along the attractive and serious axes for each
portrait subject. We use Amazon Mechanical Turk to collect pair-
wise comparisons (e.g., “Is expression A more attractive than B?”).
Pairwise comparisons are a common approach [Tsukida and Gupta
2011] to collecting subjective scoring data since it is much harder
for people to provide absolute scores.

We use separate MTurk HITs (Human Intelligence Task) for at-
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Figure 4: Visualizations of the most attractive expressions for three subjects across a range of seriousness (the upper-left is the most serious,
the lower-right the least, and seriousness decreases in reading order; attractiveness scores are shown in red). The frames are automatically
selected from 12 minutes of video using a combination of crowdsourcing and machine learning.

tractive and serious attributes, and each HIT only includes portraits
from one subject. We provide instructions with two examples of
labeled pairwise comparisons from a subject not used in our exper-
iments. Each HIT includes two control questions with obvious an-
swers, along with fourteen unknown comparisons. We discard HITs
with incorrect obvious answers, and ban users who fail more than
25% of these tests. No single worker is allowed to complete more
than 20 HITs. We pay $0.06 per HIT. Our system always uses this
structure for generating HITs; however, we sample expressions to
form pairwise comparisons in different ways (random and active)
and at different scales in different parts of our system. We discuss
this sampling in the next section.

5 Portrait Evaluation

One of the main goals of our system is to output a visualization
of the subject’s best portrait expressions from a very large input
collection of portraits, such as the frames of a video. Our visual-
ization (Figure 4) shows the most attractive expressions across 25
discretized seriousness levels; seriousness scores decrease from the
upper left to the lower right in reading order (left-to-right, top-to-
bottom), and the most attractive image within each seriousness level
is shown. These images can be used directly, or the user can select
one and use our training app to learn how to mimic its expression.

Supporting these goals requires two types of portrait evaluation.
First, we need a function that can score a portrait for both its at-
tractiveness and seriousness. This score is shown to the user in our
expression training app, and could be used to identify the best mo-
ment to trigger the shutter on a camera. Second, we need a method
to select the most attractive portraits from a large set, i.e., rank them
by attractiveness. This ranking is used to visualize a subject’s best
expressions, and could be used to select the best stills from a video.
A ranking can trivially be derived from a scoring function; how-
ever, for our application there is a difference in accuracy require-
ments. For our ranking, the relative ordering of two non-attractive
expressions is not important; instead, we want high confidence in
our ranking of the top few expressions. At the same time, the scor-
ing function should be reasonably accurate for any portrait.

To accomplish these goals, our method begins by first computing
scores for the representative expressions chosen in Section 4.2 us-
ing crowdsourced pairwise comparisons. We then use these scored
images to compute both single-subject (Section 5.2) and cross-

subject (Section 5.3) predictive models. Finally, using the cross-
subject model as a rough prior, we learn a more accurate single-
subject model with an active learning scheme that selects a small
number of pairwise comparisons that most increase ranking accu-
racy (Section 5.4).

5.1 Scoring Representative Expressions

We estimate attractiveness scores A = {a1, ..., an} and serious-
ness scores S = {s1, ..., sn} for each of n representative expres-
sions. We denote the pairwise comparison annotations as a count
matrix C = {ci,j}, where ci,j indicates expression Ii is pre-
ferred over expression Ij by ci,j times. We use the Bradley-Terry
model [1952], which models the probability of choosing Ii over Ij
as a sigmoid function of the score difference between two expres-
sions, i.e., P (Ii > Ij) = f(ai − aj) where f(u) = 1

1+exp(−u/σ) .
The scores can be estimated by solving a maximum a-posteriori
(MAP) problem [Tsukida and Gupta 2011]

A∗ = argmin
A

(− log Pr(C|A)− log(Pr(A))) , (1)

where− log Pr(C|A) is the negative log likelihood of the pairwise
comparison data given the model, and − log(Pr(A)) is a model
prior term. For now we assume A is a uniform distribution; we im-
prove this prior in Section 5.4. We can therefore rewrite Equation
(1) as

A∗ = argmin
A

−
∑
i,j

ci,j log(f(ai − aj)). (2)

We solve this equation using gradient descent (with σ in f(u) set
to 1), and then normalize scores to [0, 1] for each subject. The same
method is used to estimate seriousness scores S.

5.1.1 Convergence

We need to collect enough pairwise comparisons per subject so that
the minimization of the MAP energy in Equation 2 converges to its
minimum. As in previous work [O’Donovan et al. 2014], we find
that convergence occurs in a linear rather than quadratic number
of pairwise comparisons. To determine the actual number required,
we reserve 5 pairwise comparisons per expression as hold-out test
data, and vary the number of randomly sampled training pairs per
expression from 2 to 15. (Note that one pair compares two expres-
sions, so 15 pairs means that we sample 15 × 2 × n expressions
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Figure 5: Convergence of (a) (MAP minimization in Equation 2 and
(b) classification rate with varying numbers of training pairs per
image, for both training and testing data, and serious and attractive
attributes.

in total, i.e., each expression is seen 30 times.) We evaluate this
convergence test on three subjects and report the average MAP cost
and the classification rate (percentage of pairwise comparisons cor-
rectly predicted) as a function of the number of training pairs (2
to 15). The MAP cost is reported for both testing data (the 5 pairs
held-out) and the portion of training data used. As shown in Fig-
ure 5, both metrics converge after about 10 pairs per expression.

5.1.2 Ranking

We can use the scores to rank and select the most attractive expres-
sions across a range of serious levels, as in Figure 4. However, MAP
convergence does not necessarily mean that the scores are accurate
enough to select the best expressions. To explore this question, we
first define a rank error metric that measures the success of a selec-
tion algorithm. We assume the seriousness score of each expression
is known, and there are K serious levels (each level is a range of
serious values, as computed in Section 5.5). Given a “correct” at-
tractiveness ranking within each serious level we can compute the
deviation from this ranking as 1

K

∑K
k=0(πk − 1), where πk is the

rank of the chosen expression in the k’th serious level in the “cor-
rect” ranking. This equation takes the mean of the difference of the
rank of the chosen expression (which is 1) and its correct rank πk.
This metric is only concerned with the highest-rated expression in
each serious level, since this is the only image shown in our target
visualization.

Unfortunately, it is impossible to know whether we have collected
enough pairwise comparisons from the crowd to know the “correct”
ranking. We therefore generate a baseline ranking as follows. First,
we randomly sample 20 pairs per expression for both attractiveness
scores and seriousness scores. With this sampling, the MAP error
has converged, but the rank error may not have. We therefore gen-
erate additional samples that can fine-tune the ranking. We fix the
seriousness scores, since these are only used to place expressions
into 25 levels, and discard all but the top 10 expressions in each bin.
For each pair of these 10 expressions in each bin, we collect an ad-
ditional 20 pairwise comparisons. That is, we collect 20 redundant
opinions for each possible pair. We then re-rank the expressions us-
ing this data and our MAP minimization (Equation 2). We show
rank error relative to this correct ranking in Figure 6, both for the
initial random-sampled comparisons, and the ranking refinement.
We can see while 20 random samples is enough to minimize MAP,
it does not minimize rank error. Rank error is reduced to around 0.1
after 10 refinement samples, which means that 9 out of 10 visual-
ization expressions are correct. We show the top and bottom ranked
attractive/serious expressions for multiple subjects in Supplemental
Materials.

This method of generating a “correct” ranking is expensive: $87.8
per subject. We therefore collect this data for only three subjects, as
a reference for comparing more efficient methods. In Section 5.4,
we show how an active learning scheme can reduce this cost to
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Figure 6: Rank error convergence from method in Section 5.1.2.
(a) Mean rank error after varying the number of randomly-sampled
pairs per expression. (b) Mean rank error with different numbers of
additional pairwise comparisons per expression within each seri-
ous level.

attractive corr attractive error serious corr serious error

SVR 0.88 0.064 0.90 0.060

GBR 0.88 0.064 0.89 0.063

Table 1: Accuracy of the single-subject regression model, reported
as correlation and mean absolute error, for two regression methods.

about $5.

5.2 Single-subject predictive model

Now that we have scores for the representative expressions of a sin-
gle subject, the next step is to build a model that can predict attrac-
tiveness and seriousness scores for new photos of the same subject.
We train a subject-specific regression model that predicts scores
from facial appearance. We use the HOG features described in sec-
tion 4.3, and treat scores estimated in Section 5.1 as ground-truth.
We experimented with two popular regression models — Support
Vector Regression (SVR) [Smola and Schölkopf 2004] and Gra-
dient Boosted Regression Trees (GBR) [Friedman 2001] — and
evaluate both methods on all the 11 subjects using 10-fold cross-
validation where each fold has 20 to 25 test images. We report
correlation and mean absolute errors in Table 1. The two methods
produce similar results, and we use SVR since it is more efficient.
We also tried adding tracking landmark point coordinates (normal-
ized by face size) to our feature vector, as suggested by Khosla et
al. [2013], but found that it barely boosted prediction performance.

A natural criticism of our approach is that smile and open-eye de-
tectors could be adequate for predicting attractive expressions. To
explore this question we use an off-the-shelf smile detector [Jiang
et al. 2011], and build our own open-eye detector using the facial
tracker landmarks by taking the mean distance of the two points
on top of each eye from their corresponding points on the bottom.
Larger distances correspond to open eyes; we experimentally con-
firmed that this metric works well. We train an SVR on our score
data using only the 2-dimensional output of the smile and open-
eye detector, combined. Its correlation with the correct attractive-
ness scores is only 0.47, indicating that our model (with correlation
0.88) is understanding much more than smile size and blinks. The
smile detector output has a −0.51 correlation with seriousness, so
it is somewhat effective at modeling that attribute.

Our smile and open-eye detectors may not be state-of-the-art; we
simulate “ideal” detectors by manually selecting expressions with
open eyes and smiles. We show a histogram of the expressions by
attractiveness score in Figure 7. We can see that while open-eye and

5



To appear in ACM TOG 33(6).

0

5

10

15

20

25

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
ra

m
e 

p
er

ce
n
ta

g
e

Attractiveness scores

W/o open eyes

or smiles

With open eyes

and smiles

Figure 7: Attractiveness scores for three subjects, discretized into
10 bins. Green portions of the histogram indicate open eyes and
smiles; the red are the rest.

smile detectors can filter out the worst images, they miss many of
the more attractive expressions.

5.3 Cross-subject predictive model

Our single-subject model can predict attractiveness and seriousness
scores for one subject given 10 pairs per expression for both at-
tractive and serious attributes. This crowdsourcing costs on average
$21.6 for a single subject to achieve a good scoring function, and
$87.8 to accurately rank the top expressions, which is too expensive
for real-world applications. Given differences between humans and
their facial expressions, it is challenging to build a sufficiently ac-
curate completely automatic model for new subjects without any
crowdsourcing. However, we should be able to share information
between the single-subject models to build a reasonably effective
cross-subject model that can at least serve as an initial condition.
We therefore combine features and labels from different subjects,
and train a cross-subject SVR model to predict attractive and seri-
ousness scores using the same method as in Section 5.2.

To evaluate the model we hold-out one subject and train on the oth-
ers, and then average the results of all 11 subjects. The correlation
score between the single-subject scores and cross-subject prediction
is 0.84 for “attractive”, and 0.83 for “serious”. The cross-subject
model can also be evaluated by its rank error of 1.00; this is signifi-
cantly higher than the rank errors in Figure 6, and suggests that this
model alone is not sufficient to accurately select the most attractive
expressions.

Adding data for more subjects may improve the cross-subject
model. We plot the correlation between the scores computed in Sec-
tion 5.1 and versions of the cross-subject model trained with fewer
subjects (from 1 to 10) in Figure 8. We can see that seriousness
has converged. Attractiveness has mostly converged, but adding a
few more subjects will probably slightly improve the model. Also,
while our subjects do include a variety of races, genders, and ages,
it is likely that there are people for whom our current model will
not perform well.

In the end, we use the cross-subject serious model to predict
subject-specific seriousness scores since high accuracy is usually
not required for this attribute (in our main visualization seriousness
scores are only used to assign portraits to serious levels). In the next
section we improve the attractiveness score with a small amount of
crowdsourcing guided by active learning.
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Figure 8: Correlation between the expression scores computed in
Section 5.1 and scores from cross-subject models trained with fewer
numbers of subjects. Since there are multiple ways to select x sub-
jects (e.g., for x = 3, there are

(
11
3

)
combinations), we randomly

select at most 50 combinations and average them to produce plot
values.

5.4 Active Learning

We wish to collect a small amount of crowdsourced data to im-
prove the ranks and scores for photos of new subjects that are
first computed with the cross-subject model. The problem of se-
lecting the optimal data to collect during a learning procedure is
called active learning, and is well-studied. Though most of the lit-
erature addresses collecting class labels for objects, several papers
address pairwise comparisons while learning to rank data [Ailon
2012; Jamieson and Nowak 2011; Liang and Grauman 2014]. Most
of these techniques address learning a ranking function that op-
erates on data features, and thus can generalize to new data. In
our case, we only wish to rank existing representative expressions.
Chen et al. [2013] update the Bradley-Terry model we use in Sec-
tion 5.1 to better handle the crowdsourced setting by taking worker
quality into account. We could use their method to produce rank-
ings, but our situation is still unique for several reasons. For one,
we are most interested in accurate ranking of the most attractive
expressions. Two, our expressions are organized into serious lev-
els, and relative ranking within a serious level is most important;
on the other hand, the scores of expressions in different serious lev-
els should still be comparable. Three, while there are subtle differ-
ences in the attractiveness of expressions across different subjects,
there are also significant commonalities (e.g., open eyes and smiles
are usually more attractive). We can therefore use scores from the
cross-subject model to predict scores that can serve as a prior.

Nonetheless, our active learning scheme follows the same princi-
ples of most previous work. We more frequently sample pairs with
high uncertainty [Ailon 2012], which corresponds to pairs with sim-
ilar attractiveness scores. We add to this scheme a preference for
sampling more attractive expressions, and a preference for sam-
pling images of similar seriousness scores. (While only sampling
pairs within the same serious level would quickly optimizing rank-
ing error, the scores of different levels would drift from each other;
we therefore use a soft preference.) Finally, we use scores from the
cross-subject model as a prior.

Our method is initialized by computing baseline seriousness and
attractiveness scores S0 = {s01, ..., s0n} and A0 = {a01, ..., a0n}
from the cross-subject model. We fix the seriousness scores and
do not attempt to improve them, since they are already reasonably
accurate and only used to assign expressions to serious levels. We
then iterate through active learning rounds t = 1, ..., T . In each
round we first select n pairs to sample via crowdsourcing. These
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samples are selected by sampling a probability distribution

Pr(Ii, Ij)

∼ e−||ai−aj ||
2/2σ2

a · e−||si−sj ||
2/2σ2

s · e−[(1−ãi)2+(1−ãj)2]/2σ2
h

(3)
where

ãi ∝
ai
∑
j e
−||sj−si||2/2σ2

ã∑
j aje

−||sj−si||2/2σ2
ã

(4)

and σã in Equation 4 is set to the std. deviation of the seriousness
scores. The first factor prefers to sample expressions with similar
attractiveness scores, i.e., similar ranks. The second factor prefers
to sample similar seriousness scores. The third factor prefers to
sample more attractive expressions, according to the current esti-
mate of their scores. We use ãi because directly using ai leads
to under-sampling the more serious levels, since serious and at-
tractiveness scores are negatively correlated. Equation 4 normalizes
each score ai by a local weighted average of attractiveness scores,
where scores with similar seriousness scores (i.e., close to si) are
weighted higher. As a result, attractiveness scores that are unusu-
ally high for the local range of seriousness are more likely to be
sampled. Note that we rescale ãi to [0, 1] after we calculate Equa-
tion 4. We use σa, σs and σh to weight the relative importance of
each factor. (We describe how each parameter is set later.)

Once we have selected samples within a round t, we update the
scoring model before iterating. First, new crowdsourced labels are
added to the existing crowdsourced annotation data: ci,j = ci,j+1.
Next, we minimize Equation 1 to compute scores. However, in this
case we can use the cross-subject model as a more suitable prior
than a uniform distribution. We assume a Gaussian distribution
Pr(A) ∼ N(A0, σ2

cI) as the prior model of A, where I is the
identity matrix. That is, we encourage each expression’s score to be
similar to the cross-subject score. We can thus re-write the MAP
Equation 1 as

At = argmin
A

− log Pr(C|A)− log(Pr(A))

= argmin
A

−
∑
i,j

ci,j log(f(ai − aj)) +
1

2σ2
c

∑
i

||ai − a0i ||2

(5)
where parameter σc controls the emphasis of the cross-subject prior
relative to the data-fitting term, and σ in the sigmoid function f is
set to the std. deviation of the prior scores A0. We solve Equation 5
using gradient descent. Notice that − log Pr(C|A) increases its in-
fluence as we sample more pairs; we start from the cross-subject
model and increasingly rely on personalized crowdsourced data as
it arrives. Many expressions with low attractiveness scores may
never be sampled at all, and simply be scored by the cross-subject
model. On the other hand, highly attractive pairs of expressions may
be sampled multiple times with different workers.

5.4.1 Simulated Pairwise Comparisons

Our method has four parameters; we set these to minimize the
ranking error on pairwise comparisons generated with a simula-
tion, since online optimization with crowdsourcing would be pro-
hibitively expensive. We take the scores generated by random-
sampling pairs in Section 5.1, and assume they are ground-truth.
We then simulate a Mechanical Turk active learning experiment
by generating pairwise labels according to these scores, plus some
noise. We label ci,j = 1 if a Gaussian random number gener-
ator (with bias ai − aj and variance σiworker) produces a pos-
itive number, as suggested by Thurstone’s Law [Tsukida and
Gupta 2011]. We model each worker’s labeling noise with a Gaus-
sian kernel σiworker , where the noise std. deviation of the i’th
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Figure 9: Mean rank error averaged across three subjects versus
the number of pairwise comparisons per expression for four con-
ditions: active learning versus random sampling, across both real
(crowdsourced) and simulated data.

0.55

0.65

0.75

0.85

0.95

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

C
o

rr
el

at
io

n

Number of pairs

Simulated active

Real active

Simulated random

Real random

Figure 10: Correlation between the scores computed in Sec-
tion 5.1.2 and scores computed using either active learning or ran-
dom sampling, across both real and simulated data. Correlations
are averaged across three subjects.

worker (σiworker) is sampled from another Gaussian distribution
N(σworker, σ

2
worker). We fit the overall variation in worker noise

(σworker) to actual data from our random sampling experiments by
performing a grid search on σworker between [0.0, 0.8]. We can
see in Figure 9 that our simulation is fairly accurate compared to
crowdsourced data. We then set the parameters σ2

a, σ2
s , σ2

h and σ2
c

to values that minimize the ranking error by the end of round 20.
The optimized parameters are σ2

a = 0.02, σ2
s = 0.5, σ2

h = 0.1,
and σ2

c = 0.5. Note that the simulation is only run once to set these
parameters; it does not need to be run again for new subjects.

5.4.2 Evaluation

We can now evaluate performance over a series of sampling rounds,
where each round samples n pairs. We consider four conditions: ac-
tive learning versus random sampling, across both simulation data
and real Mechanical Turk data. Performance can be measured with
both mean rank error and the correlation with the attractiveness
scores computed in Section 5.1, averaged across three subjects. We
show these performance metrics in Figures 9 and 10.

We can see that active learning strongly outperforms random sam-
pling, especially in early rounds, for both simulated and real data.
Our active learning scheme can achieve a reasonable accuracy
(0.52) with just 5 pairs per expression, while random sampling still
has rank error 0.73 after 20 pairs. Using 5 pairs within active learn-
ing reduces the crowdsourcing cost to $5.6, on average, for a sub-
ject. Also, after 5 pairs the active learning scheme gives accurate
scores, with a correlation over 0.9.

Our method for ranking portraits has a number of components. The
active learning probability for selecting pairwise comparisons in
Equation 5 has three different factors, and we also use our cross-
subject model as a prior. How much do each of these components
contribute to the success of our method? We answer this question
by turning off individual components and comparing performance
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Figure 11: Performance achieved after removing individual com-
ponents of our active learning scheme, computed on simulated pair-
wise comparisons. We compare: (1) the full active learning scheme,
(2) active learning without a cross-subject prior, (3) random sam-
pling plus a cross-subject prior, and (4-6) active learning with a
cross-subject prior while removing one of the three factors in Equa-
tion 3.

.

using the simulated pairwise comparison data described in Sec-
tion 5.4.1 (Figure 11). We can see that each part of our method does
contribute to reducing mean rank error more quickly. The cross-
subject prior has the most significant effect, while comparing ex-
pressions with similar seriousness scores has the least significant
effect.

5.5 Visualization details

Finally, we give some technical details on how the visualization in
Figure 4 is generated.

We first divide seriousness scores intoK serious levels, and display
the most attractive expression for each serious level. We could sim-
ply evenly sample the range of seriousness scores to create serious
levels. However, the most attractive expressions tend to be less se-
rious, while there are larger numbers of serious expressions in our
input data. The most serious levels may not contain any expressions
that are attractive. We therefore divide the seriousness scores into
levels based on the idea that the sum of attractiveness scores in each
serious level should be about the same.

To compute the number of expressions in each serious level, we first
sort attractiveness scores so that their associated seriousness scores
are in descending order. We compute the sum of all attractiveness
scores, and divide by K to get the target sum of attractiveness for
each serious level. Then, we iterate through the sorted attractive-
ness scores and sum them until we reach expression ai such that
the sum exceeds the target sum for a serious level; the number of
expressions in this serious level is set to either i or i+1, depending
on which minimizes the difference between the current and target
sum. The process is repeated until all expressions are assigned to se-
rious levels. We also found it useful to increase the influence of the
most attractive expressions during this binning process by first ex-
ponentiating each attractiveness score to a power p. We set k = 25
and p = 4 in all our experiments.

6 Expression Training App

We demonstrate a simple app, called “Mirror Mirror”, for training
subjects to mimic their best expressions. The app takes input from
a webcam and displays the current expression along with its at-
tractiveness and seriousness scores, computed in real-time (about
15fps). Seriousness scores are computed with the cross-subject
model after computing features for each input frame; attractiveness
is computed from the improved single-subject model computed af-

Figure 12: Two examples from two subjects of using the cross-fade
ability of the expression training app to mimic target expressions;
the subjects triggered the capture themselves once they were happy
with their expression. We show, from left to right, the target expres-
sion aligned to the captured expression, the captured expression,
the target expression composited into the current expression, and a
50% blend between the previous two images.

ter active learning. We place a SeeEye2Eye1 device, which contains
a pair of mirrors, on the monitor so that the subject can simultane-
ously look into the camera and see the camera output.

In training mode the app shows the visualization in Figure 4, along
with scores of each portrait. The subject can select a target expres-
sion to mimic. The app then shows three windows; the current ex-
pression, the target expression, and an aligned and a blended cross-
fade between the two. The cross-fade oscillates between the target
and current expression once per two seconds, so that the subject
can examine differences between the two expressions. The target
expression is aligned to the current expression and blended to re-
move visible seams and color differences that might distract from
perceiving expression differences. We also show a similarity score
between the current and target expression that the user can try to
increase. The system automatically saves frames when similarity
scores reach new highs; the subject can also pause the system to
see fine-grained differences at a frozen moment of time. We show
a screen capture of such a session in the supplemental video. We
show examples in Figure 12 that demonstrate that subjects can ac-
curately mimic target expressions using our interface.

After alignment we blend the target expression into the current one
by performing color histogram transfer between the two images; we
then blend with Laplacian pyramids [Burt and Adelson 1983]. We
compute the similarity score between the target and current expres-
sion with a weighted sum of the difference in attractiveness scores,
the difference in seriousness scores, and the projection errors of
face alignment landmarks.

1http://www.bodelin.com/se2e

8

http://www.bodelin.com/se2e


To appear in ACM TOG 33(6).

Figure 13: We show a comparison of average images of unattrac-
tive (left) and attractive (right) portraits organized into 10 bins by
eye size (top to bottom, we show 6 of 10 bins). Eyes of equivalent
size look different between the two sides.

7 Data Analysis and Visualization

In this section we use our collected and rated portraits to provide
users with useful visualizations, glean insights on the properties of
attractive portraits, and explore differences between crowd and sub-
ject perception of attractiveness.

7.1 Eyes open

In previous work [Albuquerque et al. 2008; Wang and Cohen 2005]
it is common to assume that open eyes yield good images, and
closed eyes do not. Our analysis shows that the situation is more
nuanced. In Section 5.2 we created a simple open-eye detector, and
found its correlation with attractiveness scores is only 0.45. It is
also useful to visualize the difference between attractive and un-
attractive photos with the same eye size (Figure 13). We show av-
erage images of a single subject grouped into attractive (right) and
unattractive (left) clusters by score. The y-axis of the visualization
is organized by how open the eyes are; very open eyes are at the top,
and closed eyes at the bottom. If we look at the middle bins, we can
see a substantial difference in the appearance of good and bad eyes,
even though they are open to the same degree. On the left, the eyes
appear drugged; the upper eyelid is lowered more substantially than
on the right, while the lower eyelid is lower. These bad images usu-
ally correspond to expressions in transition (e.g., half-way through
a blink). On the right, we can see the same eye size made naturally.
Note that smiles often involve narrowing of the eyes.

This observation is consistent with a recent viral video on principles
of portrait posing by Peter Hurley2 that recommends “squinching”
(raising the lower rather than the upper eyelid to narrow the eyes).
We can see that good eyes of the same size as bad eyes exhibit more
squinching.

7.2 Subject Preferences and Poses

When subjects are asked to rank their own best portraits, are their
opinions consistent with the crowd? We asked four subjects to rank

2http://www.youtube.com/watch?v=ff7nltdBCHs

Figure 14: Given a query image (middle) we show expressions that
are similar but less or more attractive; expressions are sorted by at-
tractiveness score in increasing order. We show examples for three
subjects. (Zoom to see subtle differences; attractiveness scores are
shown in red.)

their top three portraits from the visualization in Figure 4. Their av-
erage rank compared to the first, second, and third choices of the
crowd are 10, 11, and 10.7. These ranks suggest that subject pref-
erences are not generally consistent with other viewers. An open
question is whether friends of the subject, rather than strangers,
would also have different opinions.

Second, we examine the success of subjects at posing upon demand.
The beginning of our video designed to elicit emotions asks sub-
jects to first pose for three styles of portraits; an open-mouth smile,
a closed-mouth smile, and a neutral professional photo. Then, for
seven subjects we look at the top ten attractive portraits, and use the
video timeline to determine if they came from portrait posing, or
from natural responses to videos. We find that, on average, 7.9 of
these ten expressions come from natural response, and 2.1 expres-
sions are posed. The mean rank of the single top posed expression
in these top ten is 6.6, versus 1.4 for natural expressions. This differ-
ence suggests that subjects do not generally show their best expres-
sions when asked to pose. An alternate explanation is that subjects
choose to convey something different with their expressions than
what the crowd wishes to see.

7.3 Improving Expressions

A subject may like a specific expression, but wish to see if there
are similar expressions that the crowd finds more attractive. We
therefore generate the visualization shown in Figure 14, where a
query expression is shown in the middle, and less and more attrac-
tive expressions that are similar to the query are shown on the left
and right, respectively. This visualization lets the subject see sub-
tle differences between similar expressions and how they may be
improved (or worsened).

To create the visualization from a query expression we retrieve the
top two most similar expressions who scores are higher than the
query, and two that are lower. Similarity is computed as in Sec-
tion 4.2.

7.4 Changing One Feature

Another scenario arises when a subject is interested in a specific ex-
pression, but wishes to know how changing one feature of the face
affects attractiveness. For example, the subject can ask to see dif-
ferent eye or smile sizes, with all other aspects of the face the same.

9
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Figure 15: Given a query image (middle) we show expressions that
are similar but with different eye sizes, increasing from left to right,
for two subjects. (Zoom to see subtle differences; attractiveness
scores are shown in red.)

In Figure 15 we show examples of different eye sizes, increasing
from left to right, for a specific query image (middle). We can see
in the first row that increasing the eye size slightly increases attrac-
tiveness, but opening the eyes too widely introduces awkwardness.

To create the visualization from a query expression we select the
top two most similar expressions whose eye sizes are larger, and
two that are smaller. However, in this case we turn off the HOG eye
window when computing similarity, since we do not want the eye
appearance to be too similar.

8 Results

We tested our method on nine subjects who are not paper authors,
and two authors; three of these were also tested using the more
expensive, randomly-sampled method in Section 5.1.2. We have al-
ready numerically evaluated our active learning scheme, and shown
results in Figure 4. Note that all our results shown in Figures are
generated by active learning, rather than random-sampling. Visual-
izations for additional subjects are included as supplemental mate-
rials. We tested our training app on four subjects, and show results
of mimicking expressions in Figure 12 and the supplemental video.

We also show that our method works on imagery that we did not
capture specifically for this paper; in each case, we use only the
cross-subject model without any additional crowdsourcing. First,
we downloaded a YouTube video3 on portrait posing; in this video
the photographer freezes the frame nine times to indicate good por-
traits. We select the ten most attractive frames after running peak
detection on the attractiveness score signal (to avoid repeating mul-
tiple frames of the most attractive expression). Remarkably, nine
out of ten selected expressions are the same as those selected by
the photographer (Figure 16). We show a plot of the attractiveness
scores rated by our cross-subject model over time in Figure 16.

Next, we try two personal photo collections (Figure 17). The first
comes from a public person photo dataset [Gallagher and Chen
2008], which already has faces labeled. The second comes from a
personal photo collection; we use Picasa to isolate and identify the
subjects, and then automatically remove non-frontal faces (angles
larger than 15 ◦) using the pose estimates from the face tracker. We
compute the attractiveness score on all faces of specific subjects,
and show the ten most and least attractive photos. Note that these
photo collections are already partially filtered, so there are fewer
very bad photos.

Finally, we add an experiment combining our method with the Pho-
tobios feature in Picasa [Kemelmacher-Shlizerman et al. 2011] (see

3https://www.youtube.com/watch?v=yrC9eUwPIoo

supplemental video). We filter the representative expressions to im-
ages with attractiveness scores greater than 0.6, and set their dates
in order of decreasing seriousness. The resulting Photobio shows a
smooth animation of attractive expressions from the most serious to
the least.

9 Limitations and Future Work

Our method has a number of limitations. While our videos were se-
lected to elicit a wide range of expressions, there is no guarantee
that our input video is not missing good expressions of subjects,
or that all good expressions can be triggered by watching videos.
Also, we only investigate the influence of expression on attractive-
ness; there are many other factors, such as lighting, camera view-
point and angle, makeup, and hair. These other factors may not be
independent of expression. Though we demonstrate some results on
faces captured from an angle, our current methods are not trained
on profile or near-profile views.

The most fundamental question about our expression training app
is whether it actually helps people pose better for portraits. Con-
ducting this user study accurately would require evaluating the at-
tractiveness of photos from portrait photography sessions before
and after using the app; the second session should not be immedi-
ately after the training session, to avoid improvements that are only
short-term. We leave this more ambitious user study to future work.
Our expression training app is only a proof-of-concept for now; it
remains an open question whether people can be trained to make
certain expressions, or how training compares to other alternatives
(such as remembering certain happy or funny moments).

Finally, while we describe methods to select the best expressions,
a subject may wish to slightly modify an expression to increase its
attractiveness. Using our scoring model to optimize image edits or
warps is a promising avenue for future work.

10 Conclusion

We describe a method that uses a combination of crowdsourcing
and machine learning to provide users feedback on their best por-
trait expressions, and to select their most flattering ones from photo
collections and videos. While the graphics and vision communi-
ties have focused extensively on improving photos through post-
processing, we believe there are numerous opportunities to improve
photos before they are taken. For example, we could identify which
photos or very short videos are most effective at eliciting attractive
expressions, and play them before snapping a picture. Our large,
and often unexplored, collections of photos and videos also offer a
large opportunity for identifying flattering content.
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